Responses of Aspergillus flavus to Oxidative Stress Are Related to Fungal Development Regulator, Antioxidant Enzyme, and Secondary Metabolite Biosynthetic Gene Expression
نویسندگان
چکیده
The infection of maize and peanut with Aspergillus flavus and subsequent contamination with aflatoxin pose a threat to global food safety and human health, and is exacerbated by drought stress. Drought stress-responding compounds such as reactive oxygen species (ROS) are associated with fungal stress responsive signaling and secondary metabolite production, and can stimulate the production of aflatoxin by A. flavus in vitro. These secondary metabolites have been shown to possess diverse functions in soil-borne fungi including antibiosis, competitive inhibition of other microbes, and abiotic stress alleviation. Previously, we observed that isolates of A. flavus showed differences in oxidative stress tolerance which correlated with their aflatoxin production capabilities. In order to better understand these isolate-specific oxidative stress responses, we examined the transcriptional responses of field isolates of A. flavus with varying levels of aflatoxin production (NRRL3357, AF13, and Tox4) to H2O2-induced oxidative stress using an RNA sequencing approach. These isolates were cultured in an aflatoxin-production conducive medium amended with various levels of H2O2. Whole transcriptomes were sequenced using an Illumina HiSeq platform with an average of 40.43 million filtered paired-end reads generated for each sample. The obtained transcriptomes were then used for differential expression, gene ontology, pathway, and co-expression analyses. Isolates which produced higher levels of aflatoxin tended to exhibit fewer differentially expressed genes than isolates with lower levels of production. Genes found to be differentially expressed in response to increasing oxidative stress included antioxidant enzymes, primary metabolism components, antibiosis-related genes, and secondary metabolite biosynthetic components specifically for aflatoxin, aflatrem, and kojic acid. The expression of fungal development-related genes including aminobenzoate degradation genes and conidiation regulators were found to be regulated in response to increasing stress. Aflatoxin biosynthetic genes and antioxidant enzyme genes were also found to be co-expressed and highly correlated with fungal biomass under stress. This suggests that these secondary metabolites may be produced as part of coordinated oxidative stress responses in A. flavus along with antioxidant enzyme gene expression and developmental regulation.
منابع مشابه
Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production
Contamination of crops with aflatoxin is a serious global threat to food safety. Aflatoxin production by Aspergillus flavus is exacerbated by drought stress in the field and by oxidative stress in vitro. We examined transcriptomes of three toxigenic and three atoxigenic isolates of A. flavus in aflatoxin conducive and non-conducive media with varying levels of H2O2 to investigate the relationsh...
متن کاملElucidation of the functional genomics of antioxidant-based inhibition of aflatoxin biosynthesis.
Caffeic acid (3,4-dihydroxycinnamic acid, 12 mM) added to a fat-based growth medium reduces >95% of aflatoxin production by Aspergillus flavus NRRL 3357, without affecting fungal growth. Microarray analysis of caffeic acid-treated A. flavus indicated expression of almost all genes in the aflatoxin biosynthetic cluster were down-regulated, ranging from a log2 ratio of caffeic acid treated and un...
متن کاملIdentification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus
Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B₁ (AFB₁), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria grae...
متن کاملExpression of aflR, veA and laeA as regulators of aflatoxins and cyclopiazonic acid biosynthesis pathway in Aspergillus flavus
In this study, the production of aflatoxin B1 (AFB1) and cyclopiazonic acid (CPA) was investigated in toxigenic and non-toxigenic Aspergillus flavus with respect to expression of aflR, veA and laeA genes that are involved to toxins production. A. flavus strains were cultured in YES broth at 28 °C for 4 days and the presence of (AFB1) and (CPA) was confirmed and measured by TLC and HPLC. The exp...
متن کاملVeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus.
Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms to counteract and survive the stress in the presence of ROS. In many fungi, the HOG signaling pa...
متن کامل